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D E T E R M I N A T I O N  O F  T H E  H E A T  T R A N S F E R  

C O E F F I C I E N T S  I N  P O R O U S  M E D I A  

L. V. Kim UDC 536.24 

The process of transpiration cooling is considered. Methods are suggested for estimating the volumetric 

coefficient of heat transfer with the use of a two-temperature model and the surface heat transfer coefficient 

at entry into a porous wall. 

The development of new technology under conditions of increasing heat loads puts the search for effective 

methods of heat transfer enhancement in the forefront of theoretical investigations. One of the promising trends in 

the solution of this problem is the use of porous materials (PM) in the elements of power units. For thermal 

protection against convective or radiative heat fluxes, the method of transpiration cooling is successfully used. The 

mechanism operative in the thermal protection involves the injection of a coolant through a porous medium to 

produce a screen over the contour of a body in a flow for removing heat energy from the skeleton of the porous 

material. Usually, the mathematical simulation of thermal interaction between a gas and a PM skeleton is based 

on the notion of the volumetric heat transfer coefficient av,  whose value is assumed to be known a priori. However, 

examination of a number of experimental and theoretical works on this basic characteristic of heat transfer in PM 

[1-5 ] has revealed a discrepancy between them, thus preventing the formulation of a generalizing inference as to 

the possibiIity of a unified approach to its determination. At the same time, as regards the degree of universality 

of a methodological approach, a technique based on the solution of inverse heat conduction problems (IHCP) is 

shown to be superior [4 ]. In such a case, the problem of the preliminary estimation of the coefficient sought is of 

some practical and theoretical interest. As noted in [1, 2 ], the transfer of heat from the surface of pores to the 

medium injected is characterized by the surface heat transfer coefficient a s . The two coefficients are interrelated 

by 

s (1) 
~ V  = C~S'v  ' 

where S is the active surface of the pores. Nevertheless, relation (1) has not been utilized extensively because of 

the great difficulties posed by the determination of the active surface of pores in real PM, the discrete character of 

the medium, different shapes of elementary particles, and the impossibility of measuring exactly the temperature 

of the skeleton and gas in the pores. Many complexities also arise in the formulation of the boundary conditions 

at entry into a PM, since there are virtually no theoretical relations for calculating the surface heat transfer 

coefficient aw [2 ]. 

In view of this, in the present paper homogeneous porous materials in the form of a cylindrical region with 

structure elements representing spherical and cylindrical particles, a fiber, and a strand of fibers are investigated. 

It is assumed that elementary particles are in point contact and that the cooling gas injection and thermal loading 

are implemented from the ends of the isolated region. Then, taking into account the paucity of blind and closed 

pores compared to the fraction of transporting pores, it is possible to calculate analytically the area of the active 

pore surface of porous media with different elementary particles; the specific expressions are listed in Table 1. For 

the same volumetric fraction of the skeleton Vsk we obtain from this table a simple relation expressing the 

equivalence of the active surfaces 
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TABLE 1. Transi t ion from a Porous Material to a Perforated Region 

Element of porous material 

structure- 

Active surface of pores S, 
m 2 

3Vsk 
S -  

Rsph 

s = 2(L + R) 
LR 

Dependence of channel 

radius Rch, m, on size of 

particles 

Spherical particle 

Cylindrical particle 

Fiber 

Strand of fibers 
S = - 

S = 
2Vsk 

RI 

2Vsk 

N-m t ~ + 1  r 

2 
Rch = ~ ~~ h 

LR 
Rch = T L + R 

Rch = TRf 

N - m  ) 
R c h = T  ~ - +  1 r 

Volumetric Nusselt  

number  and number  of 

channels in equivalent 

region 

Nuv  = 21-I Nus 

1 2  - . ~  m m 

2 1 I S )  

17 ~F 

3 2(L + R) 2 2 - - - (  ) Rsp h LR Rf N -  m ~ + 1  r 

In the case of a s trand of N fibers, it was noted that the internal fibers, m in number  in a plait, which do not 

participate in convective heat transfer,  do not bear a useful load in formula (1). Therefore ,  as the characteristic 

dimension of a strand of fibers the radius of an effective single fiber with surface equal to the active area of the 

external fibers in the plait was taken. 

Usually, real PMs are investigated with the help of specific physical models, for example, a system of 

differently packed small-radius spherical particles or an array of communicating cylindrical capillaries. The  simplest 

model of a PM, which represents a bundle of straight cylindrical channels, is considered. In contrast  to [1 ], where 

such a model transition from a PM to a perforated region with cylindrical pores is made,  it is suggested to impose 

an additional condition requiring the same active surface for the model and real pores. This results in a more 

regorous account of the individuality and specificity of the initial material. In Table 1 this transition is expressed 

not only as the dependence of the radius of the cylindrical channel on the size of elementary particles, but also as 

the formula for calculating the number  of capillaries n needed to determine the density of perforation. Moreover, 

to describe the thermal process in an equivalent model medium on the basis of relation (1), it is possible to construct 

a dimensionless equation that relates the volumetric Nusselt number  to the material porosity and the surface number  

Nus 

Nu v = 211 Nu s , (2) 

where the channel  radius is taken to be the characteristic dimension. It should be noted that for a number  of cases 

the formula obtained makes it possible to determine the intensity of volumetric heat t ransfer  in a PM without 

resorting to the additional specification of Nus, since in the li terature there are data on heat t ransfer  in tubes and 

channels both at entry and in the downstream region. Moreover, relation (2) not only is consistent with relation 

(1), but even augments it with an important parameter  - the poros i ty /7 ,  as confirmed by the conclusion from an 

experimental investigation [6 ] of a substantial effect of porosity on av .  

Performing the transition from a PM with a structure element in the form of a spherical particle with the 

parameters D = 5 .10  -2 m, H = 4 .10  -3 m, d = 6.3- 10 -4 m, H -- 0.3455, and M = 25.65 ~ 10 -3 kg / sec  [4 ] to a model 

perforated region with cylindrical capillaries with the help of the corresponding formulas from Table  l ,  we obtain: 

Rch = 1.109.10 -4 m, S = 4.893"10 -2 m 2, V =  7.854.10 -6 m 3, F - -  6.283.10 -4 m 2, n = 17,554. Moreover, in the 
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indicated work in three versions of temperature measurements in a PM the following values of the volumetric heat 

t ransfer  coefficient were reconstructed from the solution of the inverse heat conduction problem: a v = 2.668- 106; 

7.251. 105; 1.452"106 W / ( m a . K ) .  At the same time, the calculation for the model  per fora ted  region using 

dimensionless equation (2) with known Nusselt numbers on stabilized segments of heat t ransfer  and hydrodynamics  

in tubes at a constant temperature  T w or heat flux qw on the wall [7 ] respectively yields 

at T w = const Nu s = 3.568,  a v = 2.75-10 6", 

at qw=C~  Nu s = 4 . 3 6 5 ,  a v = 3 . 2 8 . 1 0 6  . 

As is seen from comparison of a v  data obtained by solving the inverse problem and calculated from relation (2), 

the best agreement is observed when the wall temperature is constant, which corresponds to the conditions of the 

experiment in [4 ]. Note that the above example reflects the existence of a lower limit for the applicability of formula 

(2) because of the use of asymptotic values of Nu s number  downstream. However, in the general case of unsteady-  

state convective heat t ransfer  in a porous medium the internal heat t ransfer  should be investigated by proceeding 

from the determinat ion of Nus on the initial thermohydrodynamic segments of a model capillary. 

The  mathematical simulation of transpiration cooling also presupposes account for the specific properties 

in the statement of boundary  conditions. However, the complex character of heat t ransfer  at entry into a porous 

wall is reflected in the diversity of conditions suggested. The most substantiated of them were proposed by the 

authors of [2 ], who distinguished two groups of conditions in accordance with the arrangement  of injection. With 

injection along the normal to the porous material surface 

2 d T  = Gc ( t -  to) ; (3) 

dT  
~--d-xx = aw (T - to) 

a w t -  t o _ Stw (4) 
or G c -  T ~  

and with flow along the porous wall 

dT  
2--7-ax = a (T - to); (5) 

2 d T  a _ Stw, (6) - -d-xx=GC(t- to)  or Gc 

where a is the effective coefficient of heat t ransfer  from a permeable surface to the coolant entering into it; Stw is 

the Stanton numbe r  of heat t ransfer  at ent ry  into a porous wall, characterizing the relative heating of a gas. At the 

same time it is noted that the parameters aw and a are not determined theoretically and that few experimental  

investigations for entry into a porous wall are generalized as the dimensionless relation Nuw -- Pe n, n _< 1. 

Consideration of the structure of a PM and its analysis allows one in each specific case to isolate a char- 

acteristic element of the medium with its inherent  process of heat t ransfer  and hydrodynamics,  whose repetition 

reproduces not only the structure of the PM, but the entire pattern of heat t ransfer  and flow at entry into a porous 

wall. Such elements are taken to be a spherical particle and a cylindrical fiber, as being the most characteristic. At 

the same time, the results of theoretical investigations based on the solutions of equations in the boundary  layer  

approximation are used, which are presented in the form of dimensionless heat t ransfer  relations for flows past a 

sphere and a cylindrical tube. The  maximum Nusselt numbers are observed at the stagnation points [7, 8 ]: 

Nu = 1 .315Re ~ Pr  ~ for a sphere ; (7) 

H 7 0  
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Fig. 1. Comparison of theoretical and experimental results for Stw; 1, 2) data 
of [2 ] for d -- 100/~m and d = 350/~m; 3) Stw -- 1; 4) St w = Pe-~ 5, 6) 

formula (9) for A = 1.315 and 1.14, respectively. 

Nu = 1.14 Re ~ Pr ~ for a cylinder, (8) 

where the diameter of the sphere and cylinder is taken as the characteristic dimension. The transformation of Eqs. 

(7) and (8) to be incorporated in Eqs. (4) and (6) gives the expression 

A 
St w - ReO. 5 prO. 6 , (9) 

where A = 1.315 in the case of spherical particles and A = 1.14 for cylindrical particles. The validity of such a 

transition from a unit element to an ensemble of particles on the surface of a PM is based first of all on the fact of 

satisfactory agreement between relation (9) and experimental investigations at entry into a porous wall borrowed 

from [2 ] (see Fig. 1). Curves 5 and 6, constructed by formula (9), reflect the change in Stw for porous media made 

from spherical particles and fibers, respectively. In [4 ], in addition to the reconstruction of the volumetric heat 

transfer coefficient, the surface coefficient of heat transfer at entry into a porous wall was determined in the form 

a w = 350 W/(m 2" K). Calculation by relation (9) for numerical comparison using the data for air c = 1005.7 

J/(kg. K),/z = 1.983.10 -5 kg/(m, see), Pr = 0.708, T O = 300 K gave the close value aw = 353.3 W/(m 2. K). A similar 

comparative analysis with [9 ], where the heat transfer coefficient at entry was determined to be aw -- 1160, revealed 

satisfactory agreement with a w -- 1043 according to relation (9). The condition Stw -< 1 for the relative heating of 

the gas at entry into a PM to be limited, which follows from Eqs. (4) and (6), is also valid for Eq. (9). 

Thus, the physical consistency and agreement with experimental data allow us to recommend the use of 

the techniques of estimating the volume and surface heat transfer coefficients in the design of porous materials and 

the evaluation of their heat exchange properties. The results can be employed for improving the production 

technology of porous materials and as a priori information for solving IHCP. 

N O T A T I O N  

Rsph, R and L, Rf, r, characteristic dimensions of particles in the form of a sphere, cylinder, single fiber, 

and plaited fiber; Nuv, volumetric Nusselt number; )l, thermal conductivity coefficient of the coolant; Nuw, Nusselt 

number at entry into a porous wall; Pe, Re, Pr, Peclet, Reynolds, and Prandtl numbers;/~, dynamic coefficient of 

viscosity; T, To, temperature of the skeleton and initial gas temperature; d, particle diameter; D, H, F, V, diameter, 

thickness, side surface, and volume of a sample; M, mass flow rate of the gas; ~o = /7 / (1- / / ) ;  G, specific mass flow 
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rate of the gas; c, specific heat capacity of the gas; t, to, gas temperature at entry and before entry into a porous 
material. 
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